Problem set is due in class on Oct. 12th. You must show your work to receive credit.

- 1. Suppose X is a random sample from $U(\theta_1, \theta_2)$, where both parameters are unknown $(-\infty < \theta_1 < \theta_2 < \infty)$. Find the two MLEs.
- 2. Suppose that a random variable has an exponential distribution with mean θ , which is unknown ($\theta > 0$). Find the Fisher information $I(\theta)$.
- 3. Suppose that a single observation X is taken from

$$U\left[\theta-\frac{1}{2},\theta+\frac{1}{2}\right].$$

Let the rival hypotheses be $H_0: \theta \leq 3$ and $H_1: \theta \geq 4$. Construct a test for which the power function is 0 for $\theta \leq 3$ and 1 for $\theta \geq 4$.

- 4. Suppose that X_1, \ldots, X_n are a random sample from $N(\mu, 4)$. Consider the two hypotheses $H_0: \mu = -1$ versus $H_1: \mu = 1$. Find the minimum value of $\alpha + \beta$ that can be attained for each of the following values of the sample size n: 1, 4, 16, 36.
- 5. A random sample of size 20 is taken from a normal distribution with unknown mean and a known variance, $\sigma^2 = 5$.
 - (a) Find the UMP test at $\alpha = 0.5$ for $H_0: \mu = 7$ v. $H_1: \mu > 7$.
 - (b) Find the power of the test at alternatives of 7.5, 8, 8.5, and 9.
 - (c) Graph the power function.
- 6. Suppose 9 randomly selected observations are drawn from $N(\mu, \sigma^2)$. The sample mean is 22 and the sum of squared deviations is 72. Let $\alpha = 0.05$ and carry out the following tests.
 - (a) $H_0: \mu \le 20$ v. $H_1: \mu > 20$
 - (b) $H_0: \mu = 20$ v. $H_1: \mu \neq 20$
 - (c) Construct the 95% confidence interval.